Подбор вентилятора по производительности и давлению

Пример подбора вентилятора без сети на стороне нагнетания

Пример подбора вентилятора без сети на стороне нагнетания

Задача: требуется подобрать вентилятор, под следующие параметры:

1) производительность Qтр = 10 000 м 3 /ч;

2) потери давления в сети (при плотности ρ=1,2 кг/м 3 ) ∆P = 800 Па;

3) температура перемещаемого воздуха t = 20 ºС.

В связи с тем, что сеть на стороне нагнетания отсутствует, динамическое давление вентилятора Pdv теряется, поэтому подбор необходимо проводить по статическому давлению Psv = ∆P. Статическое давление вентилятора – это разность между его полным давлением и динамическим, при данном расходе Q: Psv = Pv — Pdv. Статическое давление всегда меньше полного.

1) по графику сводных аэродинамических характеристик радиальных вентиляторов определим ближайшие вентиляторы у которых полное давление Pv, при требуемой производительности Qтр = 10 000 м 3 /ч больше Psv = 800 Па: а) ВР 85-77-8 (n = 1000 об/мин); б) ВР 85-77-6,3 (n = 1500 об/мин); в) ВР 280-46-5 (n = 1000 об/мин); г) ВР 280-46-6,3

2) на примере графика индивидуальных характеристик для ВР 85-77-8 (рис. 1) определим статическое давление вентилятора при

Qтр = 10 000 м 3 /ч:

Так как статическое давление, развиваемое вентилятором, больше потерь давления в сети, то и производительность вентилятора будет больше требуемой. Для того, чтобы вентилятор обеспечил требуемую производительность Qтр необходимо в сеть добавить дополнительное сопротивление (дросселировать сеть) ∆Pдр = Psv в — ∆P = 943 – 800 = 143 Па;

3) определим установочную мощность электродвигателя. Несмотря на то, что динамическое давление не используется, вентилятор все равно тратит мощность на его создание, поэтому кривая равной мощности должна проходить над точкой 1, лежащей на кривой полного давления вентилятора при Qтр. Выбираем ближайшую кривую Nу = 5,5 кВт;

4) определяем среднюю скорость воздуха в выходном сечении вентилятора

5) корректированный уровень звуковой мощности со стороны всасывающего отверстия LwA = 92 дБА;

6) выбираются направление вращения рабочего колеса, угол разворота улитки и дополнительные опции к вентилятору.

Результаты подбора:

1) вентилятор общепромышленный ВР 85-77-8, исполнение 1, электродвигатель 5,5/1000, номинальный ток Iн = 12,4 А;

2) статическое давление вентилятора в рабочей точке Psv = 943 Па;

3) потери давления вентилятора на дросселирование ∆Рдр = 143 Па, потери динамического давления Pdv = 47 Па, суммарные потери ∆РΣ = 190 Па;

4) скорость воздуха в выходном сечении Vвых = 9 м/с;

5) уровень звуковой мощности со стороны всасывающего отверстия LwA = 92 дБА.

Если провести аналогичные процедуры с остальными вентиляторами, выяснится, что статические давления вентиляторов ВР 280-46 №5 и № 6,3 при производительности Qтр меньше потерь давления в сети ∆P, поэтому данные вентиляторы не обеспечат требуемый расход воздуха. Выбор варианта с вентилятором ВР 85-77-6,3 для данной сети считается менее предпочтительным из-за больших суммарных потерь давления

450 Па. Покажем пример расчета эффективности работы вентиляторов ВР 85-77 № 6,3 и № 8 в данной сети.

Гидравлическая мощность сети — это мощность необходимая для преодоления сопротивления сети:

Потребляемая вентилятором № 8 мощность:

Потребляемая вентилятором № 6,3 мощность:

Эффективность вентиляционной сети при комплектовании вентилятором № 8:

Эффективность вентиляционной сети при комплектовании вентилятором № 6,3:

Как видно, при комплектовании сети вентилятором ВР 85-77-6,3 только 50 % затрачиваемой энергии используется для подачи необходимого количества воздуха, остальные 50 % — теряются.

Особенности установки и выбора осевых вентиляторов

Т. С. Соломахова, доктор техн. наук, ведущий научный сотрудник ФГУП «ЦАГИ», председатель ТК 061 «Вентиляция и кондиционирование», otvet@abok.ru

В последнее время осевые вентиляторы широко применяются в вытяжных вентиляционных системах и системах подпора. При этом возникает проблема правильного использования приведенных в каталогах аэродинамических характеристик вентиляторов при различных компоновках в сети. В статье излагаются особенности характеристик осевых вентиляторов, связанные с расчетом динамического давления. Даются рекомендации по выбору осевых вентиляторов при различных вариантах их установки в сети.

Среди различных вариантов установки осевых вентиляторов в вентиляционной сети можно выделить две принципиально разные схемы компоновки:

Компоновка 1 (рис. 1а). Вся сеть с сопротивлением R1 располагается перед входом в вентилятор (вытяжная система). Выход воздуха осуществляется в атмосферу или в большой объем.

Компоновка 2 (рис. 1б). Основная сеть с сопротивлением R2 находится за вентилятором (нагнетательная система). Перед вентилятором также может располагаться участок сети с сопротивлением R1. Такая компоновка осевого вентилятора, встроенного в систему воздуховодов, наиболее широко применяется в вентиляционных системах.

Схемы компоновки осевых вентиляторов в вентиляционной сети: а) сеть располагается на стороне всасывания; б) сеть располагается на стороне нагнетания

Существуют определенные требования к системе воздуховодов, которые непосредственно примыкают к входному и выходному сечениям осевого вентилятора [1]. Эти воздуховоды должны иметь прямолинейные участки длиной не менее 3 калибра перед и не менее 2,5 калибров за вентилятором. За калибр принимается диаметр D корпуса вентилятора. Поперечные сечения примыкающих воздуховодов должны совпадать с поперечным сечением корпуса вентилятора. Несоблюдение указанных выше условий приводит к нарушению устойчивой работы вентилятора и к существенному снижению его паспортной аэродинамической характеристики.

При выборе вентилятора, установленного в сети, кроме его производительности необходимо задавать создаваемое вентилятором давление, которое должно соответствовать сопротивлению сети. Указанные выше схемы установки осевого вентилятора предусматривают различные способы задания необходимого давления.

Полным давлением вентилятора pv в соответствии с ГОСТ 10616–90 [2] называют разность полных давлений при выходе р2 из вентилятора и при входе р1 в него:

Полное давление вентилятора складывается из статического psv и динамического давления pdv:

Именно статическое давление является полезным, поскольку оно расходуется на преодоление сопротивления системы. Поэтому очень важно, чтобы вентиляторы имели высокие значения статического давления. Полное или статическое давление определяется фактически непосредственно из испытаний вентилятора на стенде. Динамическое давление является условной величиной и рассчитывается по среднерасходной осевой составляющей скорости v2 по площади F2 выходного сечения вентилятора:

В соответствии со стандартами [3, 4] для определения аэродинамических характеристик вентиляторов существует четыре типа стендов (рис. 2), соответствующих стандартным компоновкам вентиляторов в сети:

Четыре типа стендов для определения аэродинамических характеристик вентиляторов

При испытаниях осевых вентиляторов все стенды должны иметь вспомогательный вентилятор наддува для получения характеристики вплоть до режимов, близких к нулевому статическому давлению или даже к отрицательному статическому давлению.

В соответствии с европейским регламентом [5], определяющим критерии эффективности вентиляторов, при испытаниях на стендах типа А и С со свободным выходом потока из вентилятора должно рассматриваться измеренное статическое давление. А при испытаниях на стендах типа B и D с трубопроводом на выходе должно рассматриваться измеренное полное давление.

Для расчета динамического давления вентилятора необходимо учитывать фактическое его выходное сечение. На стендах типа А и С за выходное сечение следует принимать кольцевое сечение между корпусом вентилятора и втулкой или двигателем, установленным за колесом вентилятора. На стендах типа В и D, когда на выходе из вентилятора установлен воздуховод, за выходное сечение следует принимать сечение воздуховода в виде круга, отстоящее на некотором расстоянии от выхода из вентилятора. На этом участке происходит переход потока из кольцевого сечения в круговое сечение воздуховода (рис. 3): осуществляется выравнивание поля скоростей. Для осевых вентиляторов рекомендуется принимать эффективную длину L этого участка, равную 1,25 калибра [1].

Присоединенный участок вентилятора с эффективной длиной L

Будем называть этот участок присоединенным участком вентилятора. Выравнивание поля скоростей сопровождается дополнительными потерями давления, которые могут быть условно рассчитаны как потери на удар, по известной формуле Борда-Карно [6] в виде:

D py = z 0,5ρv2 2 ; z = (1 – F/F1) 2 , (4)

где F и F1 – площади кольцевого и кругового сечений. Для осевого вентилятора отношение:

F/F1 = (D 2 – d 2 )/D 2 = 1 – n 2 , (5)

где D – диаметр корпуса, d – диаметр втулки, v = d/D – относительный диаметр втулки.

Формулы (4, 5) для расчета потерь давления в присоединенном участке воздуховода могут быть приведены к простому виду:

pу = n 4 0,5ρ v2 2 . (6)

Одновременно присоединенный участок играет роль диффузора, и при его наличии статическое давление вентилятора возрастает (рис. 4). Фактически при таких испытаниях на стендах типа B и D определяется характеристика вентилятора с присоединенным участком сети.

Характеристики осевого вентилятора, полученные на стендах типа А и типа В

При выходе из осевого вентилятора, особенно при отсутствии спрямляющего аппарата (СА), установленного за колесом, поток закручен. Кроме осевой имеется окружная составляющая скорости, которая не учитывается при расчете динамического давления вентилятора. Закрутка течения может распространяться на значительное расстояние в воздуховоде. При этом в центре воздуховода возникает возвратное течение по отношению к основному потоку, что сопровождается дополнительными потерями давления на этом участке воздуховода и во всей системе. Поэтому при отсутствии СА установка трубы за вентилятором может привести к значительному снижению полного давления вентилятора без увеличения и даже при возможном снижении статического давления.

Читайте также  Как отрегулировать реле давления воды с гидроаккумулятором?

Таким образом, при испытаниях одного и того же осевого вентилятора на стендах различных типов можно получить разные характеристики вентилятора (рис. 4). Отличие по величине давления может составлять 10 и более процентов. Поэтому в каталогах, где приводятся характеристики вентиляторов, обычно указывают, на каких стендах получены характеристики и каким образом рассчитывается динамическое давление вентиляторов. Даются дополнительные шкалы со средней скоростью v2 в выходном сечении и с динамическим давлением pdv вентилятора, которые должны использоваться при расчете статического давления.

При выборе вентилятора для конкретной вентиляционной системы правильнее всего пользоваться характеристиками, полученными на стенде, соответствующем компоновке вентилятора в этой системе. Если не удается использовать такую характеристику в каталоге, то необходимо вводить корректировку параметров рабочего режима. Рассмотрим особенности выбора осевого вентилятора в указанных выше стандартных компоновках.

Компоновка 1

Поскольку вся сеть располагается на стороне всасывания и динамическое давление вентилятора не используется, то сопротивление системы складывается из потерь давления во всасывающем участке сети

Выбор вентилятора должен осуществляться по характеристике статического давления, полученной на стенде типа А или С.

Если в каталоге приведена характеристика, полученная на стенде типа В или D, то рабочий режим необходимо корректировать, поскольку вентилятор в системе используется без присоединенного участка. И создаваемое вентилятором полное давление должно возрасти на величину потерь давления ∆pу в присоединенном участке, а динамическое давление должно быть увеличено и рассчитано с учетом кольцевого выходного сечения (рис. 4).

Поскольку доля динамического давления в полном создаваемом давлении велика, особенно при большом диаметре втулки, то существует возможность снизить величину динамического давления путем установки диффузора [7] за выходным сечением вентилятора (рис. 5). При этом снижается полное и динамическое давление, но возрастет статическое давление вентилятора. При этой компоновке также выгодно использовать вентиляторы со СА (рис. 6). За счет раскрутки потока повышается как полное, так и статическое давление вентилятора.

Характеристики вентилятора без диффузора (сплошные линии) и с диффузором (пунктирные линии)

Характеристики осевого вентилятора без спрямляющего аппарата (сплошные линии) и со спрямляющим аппаратом (пунктирные линии)

Известны варианты установки осевого вентилятора практически без сети, когда воздуховод на входе и на выходе отсутствует. Например, при установке вентилятора в окне или в стене. В этом случае сопротивлением системы является динамическое давление pdv вентилятора и рабочий режим соответствует нулевому статическому давлению, то есть максимальной производительности вентилятора.

Компоновка 2

Особенность компоновки состоит в том, что система воздуховодов располагается за выходным сечением вентилятора. Не исключается возможность установки участков сети перед вентилятором. Общее сопротивление системы складывается тогда из потерь давления R1 и R2 во входном и выходном участках сети и динамического давления потока рd при выходе из нагнетательного участка сети:

Выбор вентилятора должен осуществляться по характеристике полного давления, полученной на стенде типа В или D с учетом динамического давления вентилятора, вычисленного по круговому сечению. Если в каталоге приводится характеристика, полученная на стенде А или С с выходным сечением вентилятора в виде кольца, то характеристику нужно корректировать. Кривая полного давления снизится на величину, соответствующую потерям давления ∆pу в присоединенном участке вентилятора. В этом случае к сопротивлению сети необходимо добавить величину потерь давления ∆pу в примыкающем воздуховоде, вычисленную по формуле (6).

Необходимо отметить очень важную особенность осевых вентиляторов: течение за рабочим колесом является закрученным. Кроме отмеченной выше осевой расходной составляющей скорости v2, существует окружная составляющая, причем величина ее уменьшается от втулки к периферии колеса. Средняя величина этой составляющей скорости c2u зависит от нагруженности колеса, от коэффициента создаваемого давления. Чем выше коэффициент давления вентилятора, тем больше величина скорости c2u.

В связи с этим при работе вентилятора с нагнетательным воздуховодом необходимо использовать осевые вентиляторы со спрямляющим аппаратом, особенно в случае высоконапорных машин. Спрямляющий аппарат обеспечивает частичную или полную раскрутку потока, выходящего из колеса. Увеличивается статическое и полное давление вентилятора (рис. 6). Улучшаются условия стабилизированного течения в нагнетательном воздуховоде.

Таким образом, при выборе вентилятора для заданной сети необходимо учитывать, на каком стенде получены приведенные в каталоге или паспорте характеристики, каким образом рассчитывалось динамическое давление вентилятора. В случае несоответствия схемы испытательного стенда с компоновкой вентилятора в сети необходимо осуществлять корректировку параметров рабочего режима вентилятора.

—> Аспирация и вентиляция. —>

Вентиляторы общего назначения применяют для работы на чистом воздухе, температура которого меньше 80 градусов. Для перемещения более горячего воздуха предназначены специальные термостойкие вентиляторы. Для работы в агрессивных и взрывоопасных средах выпускают специальные антикоррозионные и взрывобезопасные вентиляторы. Кожух и детали антикоррозионного вентилятора выполнены из материалов, не вступающих в химическую реакцию с коррозионными веществами перемещаемого газа. Взрывобезопасное исполнение исключает вероятность искрообразования внутри корпуса (кожуха) вентилятора и повышенного нагревания его частей во время работы. Для перемещения запылённого воздуха применяют специальные пылевые вентиляторы. Размеры вентиляторов характеризуются номером, который обозначает диаметр рабочего колеса вентилятора, выраженный в дециметрах.

По принципу действия вентиляторы подразделяются на центробежные (радиальные) и осевые. Центробежные вентиляторы низкого давления создают полное давление до 1000 Па; вентиляторы среднего давления – до 3000 Па; и вентиляторы высокого давления развивают давление от 3000 Па до 15000 Па.

Центробежные вентиляторы изготавливают с дисковым и бездисковым рабочим колесом:

Лопатки рабочего колеса крепятся между двумя дисками. Передний диск — в виде кольца, задний — сплошной. Лопасти-лопатки бездискового колеса крепятся к ступице. Спиральный кожух центробежного вентилятора устанавливают на самостоятельных опорах, или на станине, общей с электродвигателем.

Осевые вентиляторы характеризуются большой производительностью, но низким давлением, поэтому широко применяются в общеобменной вентиляции для перемещения больших объёмов воздуха при невысоком давлении. Если рабочее колесо осевого вентилятора состоит из симметричных лопаток, то вентилятор является реверсивным.

Схема осевого вентилятора:

Крышные вентиляторы изготавливаются осевые и радиальные; устанавливаются на крышах, на бесчердачном перекрытии зданий. Рабочее колесо и осевого, и радиального крышного вентилятора вращается в горизонтальной плоскости. Схемы работы осевого и радиального (центробежного) крышных вентиляторо в:

Осевые крышные вентиляторы применяют для общеобменной вытяжной вентиляции без сети воздуховодов. Радиальные крышные вентиляторы развивают более высокие давления, поэтому могут работать как без сети, так и с сетью подключенных к ним воздуховодов.

Подбор вентилятора по аэродинамическим характеристикам.

Для каждой вентиляционной системы, аспирационной или пневмотранспортной установки вентилятор подбирают индивидуально, используя графики аэродинамических характеристик нескольких вентиляторов. По давлению и расходу воздуха на каждом графике находят рабочую точку, которая определяет коэффициент полезного действия и частоту вращения рабочего колеса вентилятора. Сравнивая положение рабочей точки на разных характеристиках, выбирают тот вентилятор, который даёт наибольший кпд при заданных значениях давления и расхода воздуха.

Пример. Расчёт вентиляционной установки показал общие потери давления в системе Нс=2000 Па при требуемом расходе воздуха Q с=6000 м³/час. Подобрать вентилятор, способный преодолеть это сопротивление сети и обеспечить необходимую производительность.

Для подбора вентилятора его расчётное давление принимается с коэффициентом запаса k =1,1:

Нв= kHc ; Нв=1,1·2000=2200 (Па).

Расход воздуха рассчитан с учётом всех непродуктивных подсосов. Q в= Q с=6000 (м³/час). Рассмотрим аэродинамические характеристики двух близких номеров вентиляторов, в диапазон рабочих значений которых попадают значения расчётного давления и расхода воздуха проектируемой вентиляционной установки:

Аэродинамическая характеристика вентилятора 1 и вентилятора 2.

На пересечении величин Р v =2200 Па и Q =6000 м³/час указываем рабочую точку. Наибольший коэффициент полезного действия определяется на характеристике вентилятора 2: кпд=0,54; частота вращения рабочего колеса n =2280 об/мин; окружная скорость края колеса u

Окружная скорость рабочего колеса 1-го вентилятора ( u

38 м/сек) значительно меньше, значит, будут меньше создаваемые этим вентилятором шум и вибрация, выше эксплуатационная надёжность установки. Иногда предпочтение отдаётся более тихоходному вентилятору. Но рабочий коэффициент полезного действия вентилятора должен быть не ниже 0,9 его максимального кпд. Сравним ещё две аэродинамические характеристики, которые подходят для выбора вентилятора к той же вентиляционной установке:

Читайте также  Давление воды в трубах в жилых домах

Аэродинамические характеристики вентилятора 3 и вентилятора 4.

Коэффициент полезного действия вентилятора 4 близок к максимальному (0,59). Частота вращения его рабочего колеса n =2250 об/мин. Кпд 3-его вентилятора несколько ниже (0,575), но и частота вращения рабочего колеса существенно меньше: n =1700 об/мин. При небольшой разнице коэффициентов полезного действия 3-й вентилятор предпочтительнее. Если расчёт мощности привода и электродвигателя покажет близкие результаты для обоих вентиляторов, следует выбрать вентилятор 3.

Расчёт мощности, требуемой для привода вентилятора.

Мощность, которая требуется для привода вентилятора, зависит от создаваемого им давления H в (Па), перемещаемого объёма воздуха Q в (м³/сек) и коэффициента полезного действия кпд:

N в= H в ·Q в/1000·кпд (кВт); Нв=2200 Па; Q в=6000/3600=1,67 м³/сек.

Коэффициенты полезного действия предварительно подобранных по аэродинамическим характеристикам вентиляторов 1, 2, 3 и 4 соответственно: 0,49; 0,54; 0,575; 0,59.

Подставляя величину давления, расхода и кпд в формулу расчёта, получим следующие значения мощности для привода каждого вентилятора: 7,48 кВт, 6,8 кВт, 6,37 кВт, 6,22 кВт.

Расчёт мощности электродвигателя для привода вентилятора.

Мощность электродвигателя зависит от вида её передачи с вала двигателя на вал вентилятора, и учитывается в расчёте соответствующим коэффициентом ( k пер). Нет потерь мощности при непосредственной посадке рабочего колеса вентилятора на вал электродвигателя, т. е. кпд такой передачи равен 1. Кпд соединения валов вентилятора и электродвигателя с помощью муфты 0,98. Для достижения необходимой частоты вращения рабочего колеса вентилятора применяем клиноремённую передачу, коэффициент полезного действия которой 0,95. Потери в подшипниках учитываются коэффициентом k п=0,98. По формуле расчёта мощности электродвигателя:

N эл= N в / k пер· k п

получим следующие мощности: 8,0 кВт; 7,3 кВт; 6,8 кВт; 6,7 кВт.

Установочную мощность электродвигателя принимают с коэффициентом запаса k з=1,15 для двигателей мощностью менее 5 кВт; для двигателей более 5 кВт k з=1,1:

С учётом коэффициента запаса k з=1,1 окончательная мощность электродвигателей для 1-го и 2-го вентиляторов составит 8,8 кВт и 8 кВт; для 3-го и 4-го 7,5 кВт и 7,4 кВт. Первые два вентилятора пришлось бы комплектовать двигателем 11 кВт, для любого вентилятора из второй пары достаточно мощности электродвигателя 7,5 кВт. Выбираем вентилятор 3: как менее энергоёмкий, чем типоразмеры 1 или 2; и как более тихоходный и эксплуатационнонадёжный по сравнению с вентилятором 4.

Номера вентиляторов и графики аэродинамических характеристик в примере подбора вентилятора приняты условно, и не относятся к какой-либо конкретной марке и типоразмеру. (А могли бы.)

Расчёт диаметров шкивов клиноремённого привода вентилятора.

Клиноремённая передача позволяет подобрать нужную частоту вращения рабочего колеса посредством установки на вал двигателя и приводной вал вентилятора шкивов разного диаметра. Определяется передаточное отношение частоты вращения вала электродвигателя к частоте вращения рабочего колеса вентилятора: n э / n в .

Шкивы клиноремённой передачи подбираются так, чтобы отношение диаметра приводного шкива вентилятора к диаметру шкива на валу электродвигателя соответствовало отношению частот вращения:

D в / D э = n э / n в

Отношение диаметра ведомого шкива к диаметру ведущего шкива называется передаточным числом ремённой передачи.

Пример. Подобрать шкивы для клиноремённой передачи вентилятора с частотой вращения рабочего колеса 1780 об/мин, с приводом от электродвигателя мощностью 7,5 кВт и частотой вращения 1440 об/мин. Передаточное отношение передачи:

n э / n в =1440/1780=0,8

Необходимую частоту вращения рабочего колеса обеспечит следующая комплектация: шкив на вентиляторе диаметром 180 мм , шкив на электродвигателе диаметром 224 мм .

Схемы клиноремённой передачи вентилятора, повышающей и понижающей частоту вращения рабочего колеса:

Подбор вентилятора

Выбор типоразмера вентилятора сводится, как правило, к подбору вентилятора, потребляющего наименьшее количество энергии, то есть имеющего наибольший КПД в данной «рабочей точке». Иногда превалирующим является требование минимизации габаритов.

Подбор радиального вентилятора по заданным значениям производительности Q и полного давления pv производится по сводному графику при этом выбирается вентилятор с характеристикой, ближе всего расположенной к заданным параметрам. Полученная точка со значениями Q и pv принимается «рабочей точкой» вентилятора.

На графике индивидуальной характеристики выбранного вентилятора определяется рабочий режим («рабочая точка») в результате пересечения этой характеристики с прямой, параллельной линиям равного КПД, проходящей через точку заданного режима — это и есть основной метод подбора центробежного вентилятора.

По «рабочей точке» вентилятора производится окончательный расчет вентиляционной сети, при котором следует учитывать допуски на полное давление, установленные ГОСТ 5976-90 для характеристик радиальных вентиляторов. При подборе вентиляторов в пределах характеристик не рекомендуется использовать режимы работы, при которых КПД меньше 0,85 h макс .

На графиках индивидуальных характеристик по выбранной «рабочей точке» находят обозначение типоразмера вентилятора.

По полученному обозначению вентилятора находят тип и установочную мощность двигателя, а также массу вентилятора.
При монтаже вентиляторов в помещениях с температурой выше плюс 40 О С и (или) на высоте над уровнем моря более 1000 м расчетную установочную мощность двигателей следует увеличить, руководствуясь указаниями ГОСТ 18374 (с допустимой для практики проектирования степенью точности).

Для выбранного типоразмера вентилятора определяют его габаритные, присоединительные и установочные размеры, а также шумовую характеристику.

Данные о динамических нагрузках на строительные конструкции от виброизолированных вентиляторов принимаются в зависимости от типоразмера виброизолятора и частоты вращения рабочего колеса и двигателя (только для 5-ой схемы).

При выдаче задания на динамический расчет строительных конструкций указывают:

  • частоту вращения рабочего колеса вентилятора, nв;
  • частоту вращения двигателя, nэ (только для исполнения 5);
  • план расположения и количество виброизоляторов;
  • динамическую нагрузку на один виброизолятор при частоте вращения рабочего колеса;
  • динамическую нагрузку на один виброизлятор при частоте вращения двигателя (только для исполнения 5).

Подбор взрывозащищенных радиальных вентиляторов для обеспечения условий взрывобезопасности должен проводиться в зависимости от категории производств по взрывной, взрывопожарной и пожарной опасности по действующим в установленном законом порядке нормам, категории и группы перемещаемой взрывоопасной смеси по ГОСТ 51330.11-99 и класса зоны взрывоопасного помещенияпо ПУЭ.

Категория производств по взрывной, взрывопожарной и пожарной опасности, категории и группы перемещаемой взрывоопасной смеси икласса зоны взрывоопасного помещения определяются в технологической или электротехнической части проекта и передаются подразделению или организации, разрабатывающей сантехническую часть проекта.

В случае, если перемещаемая взрывоопасная смесь не приведена в государственном стандарте, то определение категории и группы ее может быть произведено специализированной организацией.

Определение категории и группы взрывоопасной смеси организацией, не имеющей разрешения на такой вид деятельности, не допускается.

Подбор радиальных вентиляторов по условиям обеспечения взрывобезопасности рекомендуется производить в следующей последовательности:

  • производится предварительный выбор типа вентилятора в зависимости от категории и группы температуры взрывоопасной смеси.
  • Если перемещаемая среда содержит несколько взрывоопасных веществ, относящимся к различным классам и группам, то выбор вентиляторов производят по наивысшей категории и группе. Например, если одновременно перемещаются смеси IIВT4, то следует подбирать вентилятор для смеси IIВT4;

Подбор центробежного вентилятора по аэродинамическим, шумовым и другим параметрам, аналогичен подбору вентиляторов общего назначения.

Примеры подбора вентилятора

Пример 1Подбор вентилятора левого вращения при Q = 10 тыс. м 3 /ч,pv = 500 Па:

  • на сводном графике находится аэродинамическая характеристика, ближе всего расположенная к этим параметрам. В данном случае это ВР 80-75-6,3 с частотой вращения 950 об/мин;
  • по графику индивидуальных характеристик определяется рабочий режим — координаты “рабочей точки” вентилятора. Q = 10 тыс. м 3 /ч, pv = 520 Па, по которым производится окончательный расчет сети, находится полное обозначение по данному Руководству необходимой “рабочей характеристики” ВР 80-75-6,3, n =950 об/мин, 1,05Дн;
  • определяется типоразмер двигателя – АИР100L6, мощностью NУ =2,2 кВт и масса вентилятора (с двигателем) — 158 кг ;
  • габаритные, присоединительные и установочные размеры вентилятора и тип виброизоляторов
  • определяется шумовая характеристика вентилятора. (суммарный уровень звуковой мощности на всасывании составляет 90 дБ, а на нагнетании – 93 дБ);
  • динамическая нагрузка РДИН на один виброизолятор

Пример 2Подбор взрывозащищенного вентилятора из разнородных металлов правого вращения при Q = 5 тыс.м 3 /ч, pv = 700 Па для перемещения взрывоопасной смеси с содержанием окиси этилена и уайт-спирита:

  • по сводному графику находится аэродинамическая характеристика, ближе всего расположенная к заданному режиму. В данном случае это ВР 80-75-5 с частотой вращения 1390 об/мин, 0,95Дн;
  • по индивидуальной характеристике определяются параметры рабочего режима по точке пересечения кривой давления и линии, параллельной линиям постоянного КПД. Получим Q = 5000 м 3 /ч, рv= 700 Па. Установочная мощность двигателя равна 1,5 кВт;
  • по исходным данным, полученным в письменной форме от технологов или электриков проектирующей организации (см. п. 3.10), устанавливается, что производство относится к категории А, взрывоопасная зона помещения к классу В-1а по классификации ПУЭ, а взрывоопасная смесь содержит пары уайт-спирита и окись азота;
  • производится подбор взрывозащищенного вентилятора. Так как перемещаемая смесь содержит несколько взрывоопасных веществ, то выбор необходимо произвести по наивысшим категории и группе, для данного примера это IIBT3. Этим требованиям соответствуют вентиляторы ВР 80-75-5 из разнородных металлов и алюминиевых сплавов;
  • в соответствии с примечанием к таблице 2, вентиляторы из алюминиевых сплавов не могут применяться для перемещения окиси этилена, поэтому принимается вентилятор ВР 80-75-5Р из разнородных металлов 0,95Дн, который разрешен для перемещения двух вышеприведенных взрывоопасных веществ;
  • определяем тип двигателя АИМ90L4, его мощность 2,2 кВт и массу вентилятора 98 кг ;
  • определяем габаритные, присоединительные и установочные размеры вентилятора и тип виброизолятора;
  • определяется шумовая характеристика вентилятора. (суммарный уровень звуковой мощности на всасывании составляет 91 дБ, а на нагнетании – 94 дБ);
  • динамическая нагрузка РДИН на один виброизолятор
Читайте также  Как отрегулировать регулятор давления воды в квартире?

Пример 3Подбор теплостойкого радиального вентилятора, который при перемещении воздуха с температурой 200 0 С,который при Q = 3 тыс. м 3 /ч, долженсоздавать pv200 = 500 Па:

  • чтобы воспользоваться сводным графиком, приведем заданное полное давление к нормальной температуре (20 o С);

Pv20 = Pv200 (273+200) / (273 +20) = 1,614 * 500 =810 Па;

  • по сводному графику находится вентилятор, аэродинамическая характеристика которого ближе всего расположена к точке заданного режима – это вентилятор В-Ц 14-46-3,15, Дн, n=1395 об/мин.
  • по индивидуальной характеристике определяются параметры рабочего режима по точке пересечения кривой давления и линии, параллельной линиям постоянного КПД. Получаем Q = 3 тыс. м 3 /ч, pv20 = 800 Па.

Учитывая, что вентилятор при пробных пусках и контрольных проверках, будет работать при нормальной температуре (20 o С), необходимо комплектовать вентилятор двигателем мощностью 1,5 кВт.

  • определяется типоразмер двигателя – АИР80В4, мощностью NУ =1,5 кВт и масса вентилятора (с двигателем) — 47 кг ;
  • габаритные, присоединительные и установочные размеры вентилятора и тип виброизоляторов принимается по таблицам.
  • определяется шумовая характеристика вентилятора (суммарный уровень звуковой мощности на всасывании составляет 89 дБ, а на нагнетании – 92 дБ);
  • динамическая нагрузка РДИН на один виброизолятор

Как рассчитать минимально необходимую производительность вытяжного вентилятора и подобрать подходящее устройство?

Вентиляционные системы — неотъемлемая часть любого помещения. И, конечно, в них используется такой прибор, как вытяжной вентилятор. Без него просто не обойтись. Чтобы приобрести систему нужной мощности, обязательно надо сделать расчет производительности вытяжного вентилятора.

Нормы и требования к вентиляции помещений

По нормам, установленным СНиП, при расчете производительности вентиляторов, кратность воздухообмена должна быть не менее 0,5 м 3 в час для бытовых помещений.

Также есть определенные нормы для каждого типа жилых помещений.

  • Ванная комната, совмещенная с туалетом — 50 м 3 /час.
  • Ванная комната без туалета — 25 м 3 /час.
  • Туалет — 25 м 3 /час.
  • Кухня — от 60 до 90 м 3 /час (в зависимости от типа и мощности плиты).
  • Другие помещения — 3 м 3 /час на 1 м 3 .

Расчет производительности вытяжного вентилятора в жилых помещениях

Чтобы узнать, какой должна быть производительность вашей вытяжной системы, необходимо предпринять следующее:

  1. Узнать объем помещения.
  2. Умножаем объем на необходимую норму воздухообмена.
  3. Получившаяся цифра и есть необходимая нам производительность.
  4. Еще необходимо учесть сечение воздуховодов, изгибы, сопротивление фильтров, если они есть в системе вентиляции.

Формула для расчетов будет выглядеть так:

  • L — требующаяся производительность, м 3 /час,
  • n — необходимая норма воздухообмена, м 3 /час,
  • V — объем помещения.

Например, рассчитаем производительность вытяжного вентилятора для трехкомнатной квартиры общей площадью 59 м 2 , с ванной, туалетом, кухней и мебелью. 59 м 2 умножим на 3м (это высота), найдем объем. Он будет равен 177 м 3 .

Необходимая норма смены воздуха в час по СНиП — 10-12 раз в час. Умножим 177 на 12, получим 354 м 3 . Это и есть необходимая производительность. Но сюда нужно еще прибавить такие же расчеты по кухне, ванной и туалету. Это будет соответственно 108 м 3 , 144 м 3 и 72 м 3 . Сложив все цифры, получим мощность нашей вытяжной системы — 678 м 3 /час.

Диаметр воздуховода влияет на его пропускную способность. Существует три наиболее распространенных размера:

  • 100 мм — для вентилятора небольшой мощности, который постоянно работает;
  • 125 мм — для эпизодического проветривания помещения вентиляцией малой и средней мощности;
  • 150 мм — быстрое нерегулярное проветривание помещений с малым количеством людей.

Определение объема помещения

Объем помещения найти несложно. Для этого нужно перемножить длину комнаты на ширину и высоту.

Пример расчета производительности для ванной с площадью 9 кв.м

Рассчитаем мощность и осуществим подбор вентилятора по производительности для ванной комнаты. Площадь 9 м 2 умножим на высоту потолка 2,5, получим 22,5 м 3 . Это объем помещения.

Полностью воздух должен меняться каждые 5 минут, это 1/12 часа. Пропускная способность вентилятора будет равна — 22,5*12 = 270 м 3 .

Подбор вентилятора по минимально необходимой производительности

Нормы, которые требуются по расчетам, обычно завышены, и на практике не реализуются. На кухне или в ванной комнате во время приготовления пищи или принятия душа есть функция усиленной вытяжки. А для обеспечения минимальной установленной нормы достаточно хорошего притока воздуха и тяги в вентиляционном канале.

Производительность равна произведению объема на кратность воздухообмена. Узнав, чему она равна, сравниваем ее с нормой по требованиям СНиП, и берем максимальное значение.

Снизить расходы и подобрать вентилятор меньшей производительности можно, используя современные VAV-системы. Это вентиляционные системы, в которых возможна экономия энергии и воздухообмена путем полного или частичного отключения вентиляции некоторых помещений. Например, ночью в гостиной никого нет, поэтому можно временно отключить там вентиляцию.

Что влияет на производительность устройства?

Если смотреть на формулу расчета производительности, то она выглядит довольно простой. Но только расчеты по формуле не дают полного представления о том, какой именно вытяжной вентилятор подойдет в каком-то конкретном случае.

Есть еще некоторые факторы, влияющие на производительность устройства.

  1. Принцип работы. Вентиляция может работать в режиме отвода воздуха и в режиме рециркуляции. Рециркуляционные вытяжки имеют меньшую производительность, им требуется больше мощности.
  2. Расположение. От места, где находится вентилятор, также зависит его производительность. Например, на кухне вытяжка должна располагаться прямо над плитой на определенном расстоянии, иначе ее производительность будет снижена.
  3. Потребляемая мощность. Чем меньше вентилятор потребляет мощности, тем меньше расход электроэнергии.

Расчет производительности вентилятора для особых промышленных условий

Чтобы рассчитать необходимую производительность вентилятора для промышленных условий, нужно разработать техническое задание и определиться с некоторыми важными моментами.

  1. Место расположения объекта.
  2. Назначение помещения.
  3. Планировка и расположение внутри здания.
  4. Материал, из которого построено помещение.
  5. Количество людей, работающих на производстве.
  6. Режим работы и технология процессов.

После этого производятся необходимые расчеты. Причем необходимо учесть еще такие факторы, как скорость потока воздуха, уровень шума, длину и диаметр воздуховодов и их изгибы, давление системы. Скорость потока воздуха считается стандартной, когда она равна 2,5 — 4 м/с.

Учет количества людей, находящихся в помещении

Рассчитать необходимую мощность вентилятора можно и по другой формуле:

Этот расчет производится, учитывая количество людей в помещении.

  • L — необходимая мощность,
  • N — количество людей в помещении,
  • LH — норма воздуха на одного человека.

Для жилых помещений используется показатель 60 м 3 /час, там, где человек отдыхает, например, спальня, допускается принять за норму 30 м 3 /час, так как во сне необходимо меньше кислорода.

За количество людей принимаются те люди, которые находятся в помещении постоянно. Если к вам пришли гости, не нужно из-за этого увеличивать мощность вентилятора.

Повышенное количество влаги

Оборудование ванной комнаты может отличаться от других видов вентиляции, так как там всегда повышенная влажность. Чтобы избежать короткого замыкания, необходимо использовать специальный брызгозащищенный вариант вентилятора. Он не позволит влаге попадать в воздуховод.

Современный рынок предлагает множество вариантов вытяжных вентиляторов. Они отличаются по производительности, потребляемой мощности, уровню шума, размерам и назначению. Выбрав необходимую вам модель, вы сможете обеспечить себя и близких вам людей свежим воздухом.