Как рассчитать теплообменник для отопления?

Тепловой расчет теплообменных аппаратов

Введение

Теплообменный аппарат – это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации – проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

Основы теплового расчета теплообменных аппаратов

Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.

Уравнение теплопередачи имеет следующий вид:

  • Q – размер теплового потока, Вт;
  • F – площадь рабочей поверхности, м2;
  • k – коэффициент передачи тепла;
  • Δt – разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором.

Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:

Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:

  • G1 и G2 – расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
  • cp1 и cp2 – удельные теплоемкости (принимаются по нормативным данным), кДж/кг‧ ºС.

В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит – с другой. Эти величины (t1 вх ;t1 вых и t2 вх ;t2 вых ) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.

Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи k на рабочей поверхности.

Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:

Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).

Пример расчета

Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.

  • Температура греющего носителя при входе t1 вх = 14 ºС;
  • Температура греющего носителя при выходе t1 вых = 9 ºС;
  • Температура нагреваемого носителя при входе t2 вх = 8 ºС;
  • Температура нагреваемого носителя при выходе t2 вых = 12 ºС;
  • Расход массы греющего носителя G1 = 14000 кг/ч;
  • Расход массы нагреваемого носителя G2 = 17500 кг/ч;
  • Нормативное значение удельной теплоемкости ср =4,2 кДж/кг‧ ºС;
  • Коэффициент теплопередачи k = 6,3 кВт/м 2 .

1) Определим мощность теплообменного аппарата с помощью уравнения теплового баланса:

Q вх = 14000‧4,2‧(14 – 9) = 294000 кДж/ч

Q вых = 17500‧4,2‧(12 – 8) = 294000 кДж/ч

Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.

2) Определим значение напора t. Он определяется по формуле:

3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:

F = 81,7/6,3‧1,4 = 9,26 м2.

Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:

  • особенности конструкции и работы аппарата;
  • потери энергии при работе устройства;
  • коэффициенты теплоотдачи тепловых носителей;
  • различия в работе на разных участках поверхности (дифференциальный характер) и т.д.

Вы можете самостоятельно провести тепловой расчет на основе уравнений выше и получить результат в pdf-формате (в полях «Допустимые потери», «Давление расч.» и «Tmax» можно указать произвольные данные, единственное ограничение: Tmax > t1).

ВАЖНО: Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.

Выводы

Что мы получаем в результате расчета и в чем его конкретное применение?

Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.

Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.

В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата – основные взаимосвязанные показатели качества работы теплообменника. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.

В следующей статье мы рассмотрим назначение и особенности механического расчета теплообменника, поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.

Как рассчитать теплообменник для отопления?

Расчет пластинчатого теплообменника

Сначала мы рассмотрим, какие бывают теплообменники, а потом рассмотрим формулы расчета теплообменников. И Таблицы различных теплообменников по мощностям.

Паяный теплообменник AlfaLaval — неразборный!

AlfaLaval — Разборный с резиновыми прокладками

Основное предназначение теплообменников такого типа — это мгновенная передача температуры от одного независимого контура — другому. Это дает возможность получить тепло от центрального отопления к своей независимой системе отопления. Также дает возможность получать горячее водоснабжение.

Существуют разборные и неразборные теплообменники! AlfaLaval — Российского производства!

Паяный теплообменник AlfaLaval — неразборный!

Конструкция

В паяных теплообменниках из нержавеющей стали не нужны прокладки и прижимные плиты. Припой надежно соединяет пластины во всех точках контакта, что обеспечивает оптимальный КПД теплопередачи и высокое сопротивление давлению. Конструкция пластин рассчитана на длительный срок эксплуатации ППТ очень компактны, так как теплопередача происходит практически через весь материал, из которого они изготовлены. Они имеют небольшую массу и малый внутренний объем. Компания Альфа Лаваль предлагает широкий спектр аппаратов, которые всегда можно приспособить к конкретным требованиям заказчиков. Любые задачи, связанные с теплообменом, ППТ решают наиболее эффективным с экономической точки зрения способом.

Паяный пластинчатый теплообменник состоит из тонких гофрированных пластин из нержавеющей стали, соединенных между собой вакуумной пайкой с использованием меди или никеля в качестве припоя. Теплообменники, паянные медью, чаще всего применяются в системах теплоснабжения или кондиционирования воздуха, в то время как никельпаяные в основном предназначены для пищевой промышленности и для работы с агрессивными жидкостями.

Защита от смешения сред

В тех случаях, когда по правилам эксплуатации или по иным причинам требуется обеспечить повышенную безопасность, можно воспользоваться патентованными конструкциями паяных теплообменников с двойными стенками. В этих теплообменниках две среды отделены друг от друга двойной пластиной из нержавеющей стали. В случае внутренней протечки ее можно будет заметить на внешней стороне теплообменника, но смешения сред в любом случае не произойдет.

AlfaLaval — Разборный с резиновыми прокладками

Теплообменник: Жидкость — жидкость

1-пластины; 2-стяжные болты; 3,4-передняя и задняя массивная плита; 5-патрубки для присоединения контура теплоснабжения; 6-патрубки для присоединения трубопроводов системы отопления.

Получить отдельный замкнутый (независимый) отопительный контур системы отопления, при этом получая только тепловую энергию. Расход и давление не передаются. Тепловая энергия передается за счет передачи температуры теплопередающими пластинами по разные стороны которого протекает теплоноситель (отдающий тепло и принимающий тепло). Это дает возможность изолировать свою систему отопления от центральной сети отопления. Могут быть и другие задачи.

1-подающий патрубок для отпуска тепла; 2-обратный патрубок для отпуска тепла; 3-обратный патрубок для приема тепла; 4-подающий патрубок для приема тепла; 5-канал для приема тепла; 6-канал для отпуска тепла. Стрелками указано направление движения теплоносителя.

Читайте также  Как подключить горячую воду от котла отопления?

Схема системы отопления

Каждый пластинчатый теплообменник обладает значениями, которые необходимы для расчета.

Эффективность (КПД) теплообменника находиться по формуле

На практике эти значения равны 80-85%

Какие должны быть расходы через теплообменник?

По разные стороны теплообменника имеются два независимых контура, это означает, что расходы этих контуров могут быть разными.

Чтобы найти расходы нужно знать, сколько тепловой энергии потребуется для отопления второго контура.

Например, это будет 10 кВт.

Теперь нужно посчитать необходимую площадь пластин для передачи тепловой энергии по этой формуле

Полный коэффициент теплопередачи

Чтобы решить задачу нужно познакомиться с некоторыми типами теплообменников, и на их основе производить анализ расчетов подобных тепловых обменников.

Самостоятельно сделать расчет теплообменника у Вас не получиться по одной простой причине. Все данные, которые характеризуют теплообменник скрыты от посторонних лиц. Возникает трудность найти коэффициент теплопередачи от реального расхода! И если расход будет заведомо маленьким, то и КПД теплообменника будет не достаточным!

Увеличение мощности с уменьшением расхода приводит к увеличению самого теплообменника в 3-4 раза по количеству пластин.

У каждого производителя теплообменников есть специальная программа, которая подбирает теплообменник.

Чем выше коэффициент теплопередачи, тем быстрее этот коэффициент становиться меньше из-за отложение от накипи!

Графа «Теплоноситель» — контур 1 источника тепла.

Расчет пластинчатого теплообменника — как правильно определить параметры?

Общие принципы устройства схем теплоснабжения

Система теплоснабжения представляет собой систему транспортировки тепловой энергии (в виде нагретой воды или пара) от источника тепловой энергии к ее потребителю.

Система теплоснабжения в основном состоит из трех частей: источник тепла, потребитель тепла, тепловая сеть — служащая для транспортировки тепла от источника к потребителю.

  1. Паровой котел на ТЭЦ или котельной.
  2. Сетевой теплообменник.
  3. Циркуляционный насос.
  4. Теплообменник системы горячего водоснабжения.
  5. Теплообменник системы отопления.

Роль элементов схемы:

  • котельный агрегат — источник тепла, передача теплоты сгорания топлива к теплоносителю;
  • насосное оборудование — создание циркуляции теплоносителя;
  • подающий трубопровод — подача нагретого теплоносителя от источника к потребителю;
  • обратный трубопровод — возврат охлажденного теплоносителя на источник от потребителя;
  • теплообменное оборудование — преобразование тепловой энергии.

Температурные графики

В нашей стране принято качественное регулирование отпуска теплоты потребителям. Т. е. не изменяя расход теплоносителя через теплопотребляющую систему, изменяется разность температур на входе и на выходе системы.

Это достигается изменением температуры в подающем трубопроводе в зависимости от температуры наружного воздуха. Чем ниже температура наружного воздуха, тем выше температура в подающем трубопроводе. Соответственно температура обратного трубопровода также изменяется по этой зависимости. И все системы потребляющие тепло проектируются с учетом этих требований.

Графики зависимости температур теплоносителя в подающем и обратном трубопроводе называются температурным графиком системы теплоснабжения.

Температурный график устанавливается источником теплоснабжения в зависимости от его мощности, требований тепловых сетей, требований потребителей. Температурные графики называются по максимальным температурам в подающем и обратном трубопроводах: 150/70, 95/70 …

Срезка графика в верхней части — когда у котельной не хватает мощности.

Срезка графика в нижней части — для обеспечения работоспособности систем ГВС.

Работа систем отопления идет в основном по графику 95/70 для обеспечения средней температуры в отопительном приборе 82,5°С при -30° С.

Если требуемую температуру в подающем трубопроводе обеспечивает источник тепла, то требуемую температуру в обратном трубопроводе обеспечивает потребитель тепла своей теплопотребляющей системой. Если происходит завышение температуры обратной воды от потребителя, то это означает неудовлетворительную работу его системы и влечет за собой штрафы т. к. приводит к ухудшению работы источника тепла. При этом снижается его КПД. Поэтому существуют специальные контролирующие организации, которые отслеживают, чтобы теплопотребляющие системы потребителей выдавали температуру обратной воды по температурному графику или ниже. Однако в некоторых случаях подобное завышение допускается, напр. при установке отопительных теплообменников.

График 150/70 позволят передавать тепло от источника тепла с меньшими расходами теплоносителя, однако в домовые системы отопления нельзя подавать теплоноситель с температурой выше 105°С. Поэтому производят понижение графика, например на 95/70. Понижение производится установкой теплообменника либо подмесом обратной воды в подающий трубопровод.

Гидравлика тепловых сетей

Циркуляция воды в системах теплоснабжения производится сетевыми насосами на котельных и тепловых пунктах. Так как протяженность трасс достаточно велика то разность давления в подающем и обратном трубопроводах, которую создает насос, уменьшается с удалением от насоса.

Из рисунка видно, что для наиболее удаленного потребителя самый малый располагаемый перепад давления. Т. е. для нормальной работы его теплопотребляющих систем необходимо чтобы они имели самое малое гидравлическое сопротивление для обеспечения требуемого расхода воды через них.

Расчет пластинчатых теплообменников для систем отопления

Приготовление отопительной воды может происходить путем нагрева в теплообменнике.

При расчете пластинчатого теплообменника для получения отопительной воды, исходные данные берутся для самого холодного периода , т. е. когда необходимы самые высокие температуры и соответственно самое большое теплопотребление. Это наихудший режим для теплообменника, рассчитанного на отопление.

Особенностью расчета теплообменника для системы отопления является завышенная температура обратной воды по греющей стороне. Это допускается специально т. к. любой поверхностный теплообменник принципиально не может охладить обратную воду до температуры графика, если по нагреваемой стороне на вход в теплообменник поступает вода с температурой графика. Обычно допускается разница 5—15°С.

Расчет пластинчатых теплообменников для систем ГВС

При расчете пластинчатых теплообменников для систем горячего водоснабжения исходные данные берутся для переходного периода , т. е. когда температура подающего теплоносителя низка (обычно 70°С), холодная вода имеет самую низкую температуру (2—5°С) и при этом еще работает система отопления — это май-сентябрь месяцы. Это наихудший режим для теплообменника ГВС.

Расчетная нагрузка для систем ГВС определяется исходя из наличия на объекте, где устанавливаются теплообменники аккумуляторных баков.

При отсутствии баков расчет пластинчатых теплообменников производится на максимальную нагрузку. Т. е. теплообменники должны обеспечивать нагрев воды и при максимальном водоразборе.

При наличии аккумуляторных баков пластинчатые теплообменники рассчитываются на среднечасовую нагрузку. Аккумуляторные баки пополняются постоянно и компенсируют пиковый водоразбор. Теплообменники должны обеспечивать только подпитку баков.

Соотношение максимальной и среднечасовой нагрузок достигает в некоторых случаях 4—5 раз.

Обращаем Ваше внимание, что расчет пластинчатых теплообменников удобно производить в собственной расчетной программе «Ридан».

Как подобрать теплообменник

На правах рекламы

И если профессиональные монтажники представляют себе подобные устройства и возможности их использования в достаточной мере, то для большинства обывателей теплообменник – это что-то металлическое, расположенное внутри котла, что греет воду. Вместе с тем сфера применения данных устройств очень обширна.

Прежде всего, теплообменник представляет собой оборудование, в рабочем блоке которого налажен теплообмен между элементами, обычно это жидкости с различными температурами. В теплообменнике две среды разделяют только тонкие стенки труб или пластин с высокой теплопроводностью. Чем выше площадь такого контакта, тем больше тепла успеет перейти от более нагретой жидкости к холодной. По смыслу теплообменник всегда поточный, хоть сами устройства между собой могут существенно отличаться объемом камер и секций для перекачки двух сред.

Теплообменники применяют в системах отопления, системах охлаждения, для обогрева бассейнов, в различных отраслях: машиностроении, химической промышленности, фармацевтике и пищевом производстве и т.д.

Вместе с тем при помощи данных устройств можно реализовать весьма эффективные инженерные решения в части отопления и горячего водоснабжения не только на крупных промышленных объектах, но и в частных домах, и даже в квартирах. И для этого нет необходимости самостоятельно изобретать велосипед из подручных средств – выпускаемый сегодня производителями ассортимент теплообменников в состоянии обеспечить решение любой бытовой задачи.

Возникает лишь один вопрос: как правильно подобрать необходимое и отвечающее именно вашим задачам оборудование и при этом не переплатить.

При выборе теплообменника нужно учитывать массу параметров, разобраться в значении которых обывателю порой просто не под силу. Поэтому выбор лучше доверить профессионалам, которые выполнят расчет, подберут необходимое оборудование и предоставят комплексную информационную поддержку.

Читайте также  Как спаивать полипропиленовые трубы отопления?

Одним из крупнейших игроков на рынке теплообменников является компания «Комплексное снабжение», которая не только объединяет несколько десятков мировых брендов, но и имеет собственное производство подобного оборудования под торговой маркой «КС», для максимального удовлетворения запросов покупателей.

Инженеры компании по вашему запросу осуществят качественный расчет именно для вашего объекта и предложат оптимальный вариант по соотношению «цена-качество». При этом покупателю, оформляя заказ, не придется тратить много времени на заполнение непонятных опросных листов еще более непонятными показателями, как это зачастую бывает в других компаниях.

Под конкретный технологический процесс специалисты подберут определенный тип теплообменника с учетом технических характеристик и рабочих параметров. Не менее важен и материал, из которого изготавливают теплопередающие поверхности между теплоносителями, чтобы обеспечить надежную и долговечную работу.

На сегодняшний день наиболее совершенными устройствами являются пластинчатые теплообменники в разборном и паяном исполнении. Данные приборы являются универсальными, весьма компактными и отвечают высоким показателям энергоэффективности.

Каждый из названных типов применяется в зависимости от конкретной задачи.

Например, для частных домов и коттеджей чаще применяются паяные теплообменники. Их используют в системах теплого пола, для организации горячего водоснабжения, отопления теплиц, веранд и пешеходных дорожек. В многоквартирных жилых домах, в основном, используются пластинчатые разборные теплообменники (как в тепловых пунктах, так и по отдельности), что позволяет сократить издержки на потребление тепловой энергии.

Паяные теплообменники очень эффективны в технологических процессах, использующих неагрессивные жидкости без механических примесей. Они отличаются компактностью, отсутствием протечек и устойчивостью к нагрузкам. К большим преимуществам можно отнести их невысокую стоимость и отсутствие необходимости обслуживания. Рабочая температура паяных теплообменников варьируется от –180 до +200 °C, максимальное же давление — до 45 бар.

Клиент обратился с просьбой подобрать теплообменник для непостоянного отопления веранды площадью 100 метров квадратных и высотой потолка 3 метра. Установленный в доме газовый котел мощностью 35 кВт работает по температурному графику 95/70. Согласно расчету специалистов «Комплексного снабжения» в качестве оптимального варианта был выбран паяный теплообменник KAORI Е40-26, с залитой в отопительный контур незамерзающей жидкостью на основе пропилен-гликоля. Система обеспечивает температуру теплоносителя на выходе 80 градусов, на входе – 60. Когда нет необходимости отапливать веранду, клиенту достаточно просто выключить насос контура.

Пластинчатые теплообменники за счет своей конструктивной особенности имеют ряд превосходных потребительских характеристик:

  • универсальность (может применяться на различных объектах и использоваться в зависимости от требуемой мощности);
  • экономичность (стоимость теплообменника зависит от количества пластин, количество же пластин подбирается, исходя из требований конкретного объекта);
  • как следствие – компактность (теплообменник подбирается согласно требуемым показателям теплоотдачи, чем меньше перепады – тем меньше пластин используется);
  • ремонтопригодность (в случае повреждения можно обойтись заменой изношенной пластины, а не всего устройства).

Температурный диапазон пластинчатых теплообменников – от -50 до +200 градусов, а рабочее давление – от 10 до 30 бар, в зависимости от материала рамы.

Заказчик поставил задачу подобрать теплообменник для организации отопления коттеджа площадью 152 квадратных метра со стандартной высотой потолков. Температура теплоносителя (греющего контура) от ТЭЦ – 120 градусов на входе в теплообменник, 70 – на выходе. Требовалось рассчитать теплообменник так, чтобы на выходе из теплообменника (нагреваемый контур) получить 90 градусов. Для данного проекта специалисты «Комплексного снабжения» предложили пластинчатый разборный теплообменник КС03.

По каким параметрам осуществляется подбор теплообменника?

  1. Технические характеристики: тепловая нагрузка, расходы рабочих сред, температурный график, допустимые потери давления, максимальные и минимальные рабочие температура и давление, коррозионная агрессивность рабочих сред. Например, чем выше требуемая мощность, тем большими габаритами, количеством пластин и уплотнений будет обладать теплообменник.
  2. Компания-производитель. Зарубежные бренды, такие как Sondex, APV, Swep, Danfoss, Tranter, Funke, Alfa Laval и др. имеют более высокую цену, по сравнению с отечественными аналогами. Исходя из этого, стоимость теплообменника может варьироваться, хотя исходные характеристики будут совпадать. Теплообменники российского производства представлены марками КС, Ридан, ТИ и ТИЖ. Компания-производитель «Комплексное снабжение» использует современные импортные материалы, которые обеспечивают надежность и долговечность теплообменных аппаратов. Производственное оборудование соответствует международным и российским стандартам, а перед сдачей проводятся обязательные гидравлические испытания.
  3. Типы и материалы рам. Рамы теплообменника определяют максимально возможное давление. Изготавливают как «облегченный» тип рам (до 10 бар), так и «усиленный» (до 25-30 бар).
  4. Типы и материалы уплотнений и пластин для теплообменников. Основами пластин выступают титан, нержавеющая сталь (AISI 304, AISI 316), легированная сталь, латунь (специфические среды), медь, сплавы на основе никеля и другие материалы для специфических теплоносителей. Уплотнения в теплообменниках не допускают смешения теплоносителей в контурах теплообмена. По способу исполнения бывают клеевые (с использованием специального клея) или клипсовые (зажимается и фиксируется). Преимуществами клипсового соединения является то, что значительно легче осуществлять замену вышедших из строя уплотнений. На стоимость уплотнений также оказывают влияние многие показатели: сопротивление агрессивным средам, износостойкость, теплостойкость.

И это далеко не полный перечень нюансов, учитываемых при выборе теплообменников. Очевидно, что человеку, не являющемуся профессионалом в данном вопросе, купить теплообменник самостоятельно и сделать корректный выбор будет крайне сложно. В таких ситуациях на помощь придут специалисты компании «Комплексное снабжение». Достаточно отправить заявку на fhouse@sn22.ru, и вы получите качественный расчет именно для вашего объекта с предложением оптимального варианта по соотношению «цена-качество».

Как выбрать теплообменник

Теплообменник — устройство, в котором происходит процесс обмена энергией (теплом) между средами различной температуры. Конкретные параметры и характеристики оборудования зависят от его типа.

Все устройства делятся на две большие группы. В одних среды смешиваются друг с другом, в других они разделены стенкой. Вторые используют чаще и называют поверхностными. Среди них выделяют регенеративные и рекуперативные установки, в зависимости от направления потока теплоносителя.

По особенностям конструкции разделяют аппараты с плоской поверхностью (пластинчатые, спиральные) и трубчатые (кожухотрубные, змеевиковые, «труба в трубе»).

При выборе оборудования нужно обращать внимание на ряд параметров. Начнем по порядку.

Базовые характеристики

Независимо от типа устройства, надо учитывать основные параметры:

Площадь теплообмена. Это площадь одной поверхности изделия, умноженная на количество поверхностей. Плюс, на нее влияют другие факторы: потеря давления в ходе работы, дополнительные ресурсы площади на случай появления отложений, коэффициент теплопередачи и скорости в каналах.

Мощность теплообменника. Объем тепла, который выделяет аппарат.

Габариты и вес. От них будет зависеть, справится ли оборудование с поставленной задачей. Также они влияют на количество требуемых материалов для изготовления устройства.

Дальше необходимо определить технические условия использования оборудования.

Технические условия эксплуатации

При подборе теплообменника важно понимать, в каких условиях оно будет работать.

Тип среды. В качестве теплоносителей обычно используют пар, воду, нефть, газ. Структура прибора будет влиять на расчеты и дальнейший подбор, так как агрессивные вещества требуют повышенных свойств прочности устройства.

При использовании нестандартных сред, могут понадобиться значения теплоемкости, вязкости и теплопроводимости носителя тепла.

Расход рабочей среды. Нужно знать, какая масса рабочей среды проходит через теплообменную установку за определенный интервал времени. Для вычисления этого плотность среды умножают на ее объем.

Температуры сред на выходах и входах теплообменника. Чем больше эта разница, тем дешевле и меньше в размерах аппарат.

Допустимые потери по напору нагреваемой и охлаждаемой стороны. При прохождении через теплообменник теплоносителя и теплопотребителя происходит падение давления рабочей среды. Важно учитывать это при выборе, потому что слишком большое падение давления жидкости не позволит, например, поднимать ее на верхние этажи здания.

Максимальная рабочая температура. Чем выше температура внутри оборудования, тем жестче требования к устройству теплообменного аппарата и материалам его изготовления.

Максимальное рабочее давление. Аналогично предыдущему пункту, чем выше внутри теплообменника давление, тем серьезнее требования к его конструкционным особенностям и используемым при проектировании материалам.

Тепловая нагрузка. Способность теплообменного аппарата передать количество энергии от одной среды другой. Оборудование с высокими нормами тепловой нагрузки обычно имеет большие габариты и работает под большим давлением.

Читайте также  Как поставить два насоса в систему отопления?

Исходя из технических условий эксплуатации, производят расчет теплообменника.

Варианты расчета

Есть восемь способов расчета оборудования, каждый нужен для своих целей и задач.

Тепловой расчет. Применяют при проектировании теплообменников известной мощности и при монтаже готовых установок в заданных условиях. Главная задача этого расчета — определить оптимальный тип прибора и форму теплообменной поверхности. Дополнительно он позволяет определить эффективность теплопередачи, площадь теплообменной поверхности, массовый расход теплоносителя и его температуру на выходе.

Основа для расчета — уравнения теплопередачи и теплового баланса.

Уравнение теплопередачи имеет вид:

Q — размер теплового потока, Вт;

F — площадь рабочей поверхности, м²;

k — коэффициент передачи тепла;

Δt — разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором.

Величину F, которая является целью расчета, определяют именно через уравнение теплопередачи:

Компоновочный расчет. Позволяет определить оптимальное взаимное расположение каналов теплообменника для разных теплоносителей.

Вытекает из теплового расчета и использует его результаты.

Конкретную формулу расчета определяют тип теплообменного ап­парата и его конструктивные особенности.

Поверочный расчет. Осуществляется на основе теплового расчета и предназначен для проверки возможности установки справляться с поставленной задачей в конкретных условиях. Для его выполнения нужно знать тепловую производительность и параметры тепловой среды.

Гидравлический расчет. Позволяет вычислить необходимые для работы гидравлические параметры теплоносителя, например, скорость его движения.

С одной стороны, скорость ограничивает величина гидравлического сопротивления, с другой, ее увеличение требует повышения энергозатрат на перекачивание теплоносителя.

Конструктивный расчет. Выполняют на стадии проектирования теплообменного устройства для определения самого типа изделия. С его помощью рассчитывают требуемое число пластин пластинчатого теплообменника, количество труб и их длину, диаметр и высоту прибора в кожухотрубном устройстве.

Исходными данными служат результаты теплового и гидравлического расчетов.

Механический расчет. Определяет способность конструкции теплообменного аппарата выдерживать факторы внутренней и внешней механической нагрузки: изгиб, сжатие, растяжение и подобные.

Если кратко, расчет делают так:

  1. Выбирают материал для изготовления элементов конструкции.
  2. Проводят расчет толщины корпусной стенки c учетом напряжения, диаметра теплообменника и расчетного давления.
  3. Рассчитывают толщину днища, учитывая его форму.
  4. Производят расчет опор прибора с учетом типа опоры, количества опор и их исполнения.
  5. Рассчитывают максимальный вес аппарата.
  6. Проверяют прочность фундамента. Напряжение материала фундамента должно быть больше напряжения опорной поверхности.

Расчет температурных напряжений. Используют для определения изменения геометрической формы теплообменника и отдельных его элементов при тепловом воздействии и для выявления мест напряжения, возникающих из-за температурного расширения. Это позволяет правильно подбирать материалы, из которых изготавливают элементы оборудования.

Прочностный расчет. Объединяет три перечисленные выше вида — механический, гидравлический и расчет температурных напряжений. Проверяет, как установка выдерживает все виды нагрузки, возникающие под влиянием любых возможных факторов.

Нажимая на кнопку “Подписаться”, я даю согласие на обработку своих персональных данных.

Теплообменники под разные задачи

При подборе важно знать, где будет устанавливаться прибор. Их используют в системах отопления, горячего водоснабжения, вентиляции, при монтаже систем охлаждения и подогрева бассейнов.

От назначения изделия будут зависеть требования к его свойствам.

Для бассейна

Выбирая теплообменное оборудование для бассейна, рассматривают параметры:

  1. Тип нагревательного устройства: трубчатый или пластинчатый.
  2. Пропускная способность. Показывает, через сколько времени весь объем бассейна будет прокачан через теплообменник.
  3. Материал трубок или пластин. Для пресной воды выбирают нержавеющую сталь, для резервуаров с морской — титан.
  4. Тип нагревателя, к которому будет подключаться аппарат: газовый или электрокотел.
  5. Тепловая мощность. Важнейший показатель при выборе. Если у прибора будет недостаточная мощность, то вода в бассейне не прогреется до нужной температуры.

В основном для бассейнов используют один из двух видов устройств:

Пластинчатые, потому что они проще других в обслуживании, обладают более высоким коэффициентом полезного действия и малыми размерами. В пластинчатый разборный теплообменник всегда можно добавить пластины, увеличив его мощность.

Кожухотрубные, так как они обладают большей площадью теплообмена, не создают гидравлических помех для прохождения нагреваемой жидкости, меньше засоряются в процессе эксплуатации.

Для отопления

При проектировании системы отопления потребуется знать, какой мощности нужен источник тепла, а также температуру подачи теплоносителя.

Исходные данные нужно брать для самого холодного периода, когда необходимы максимально высокие температуры и самое большое теплопотребление.

Дополнительно стоит знать:

  1. Жилое или нежилое помещение будет отапливаться. Нагрузку определяют исходя из площади и объема здания, а также учитывают теплопотери здания через все ограждающие конструкции.
  2. Качество воды. Присутствуют ли в ней загрязнения, которые оседают на поверхности пластин и ухудшают теплообмен.
  3. Источник обогрева будет свой или тепловые сети.
  4. Есть ли планы в дальнейшем увеличивать мощность теплообменника. Например, планируется достройка помещения и площадь увеличится.

Для систем отопления подходящим выбором станут пластинчатые паяные теплообменники или разборные, чтобы иметь возможность нарастить мощность. В качестве рабочих теплоносителей используют воду и гликольные смеси.

Для горячего водоснабжения

В случае с горячим водоснабжением источником тепла обычно является теплоноситель системы отопления, а нагреваемой средой — холодная вода.

При подборе теплообменника для системы ГВС, нужно знать:

  1. Необходимую температуру подачи.
  2. Объем жидкости, который придется нагревать.
  3. Тип помещения, где будет установлен прибор. Это могут быть столовые, рестораны, душевые в гостиницах и спортзалах, частные дома и многоквартирные комплексы.
  4. Количество точек водоразбора — это количество мест, где необходима горячая вода. Например, в обычной однокомнатной квартире их две: кухня и ванная.
  5. Если в качестве источника тепла используется центральное теплоснабжение, то учесть его «летний» режим работы.
  6. Рассчитывать пиковые нагрузки работы ГВС. Например, в многоквартирных домах утром и вечером нагрузка увеличивается.

По итогу в выборе часто склоняются к разборным пластинчатым теплообменникам потому что:

  • Их легче остальных промывать. Из-за примесей в воде со временем на пластинах откладываются загрязнения, ухудшающие теплопередачу. В итоге прибор может даже выйти из строя. Поэтому теплообменник необходимо промывать не реже одного раза в год.
  • Их легко ремонтировать. Для восстановления функционирования устройства достаточно заменить неисправную пластину.
  • Резиновые прокладки аппарата предотвращают утечку при любом его повреждении. Они устойчивы к перепадам давления и температуры.

Для бани

Вариантом теплообменного прибора для бани может стать змеевик из алюминия или меди. Прибор монтируется в банную печь рядом с каменкой или сверху на топку. В таком случае вода будет греться непосредственно от жара из топки, а печь работает и для обогрева, и для горячего водоснабжения. Недостатком такого способа является закипание — когда печь еще не прогрелась, а вода в баке уже начинает кипеть.

Также есть трудности с обслуживанием и заменой частей этого вида теплообменника. На стенках встроенного устройства накипь собирается быстрее, и чем толще ее слой, тем меньше теплопроводность материала — передача тепла происходит хуже. Тогда приходит время чистить изделие, а для его замены придется разобрать печь.

Для теплого пола

Для создания комфортного климата в жилом помещении устанавливают систему теплых полов.

Предпочтение отдают пластинчатым паяным теплообменникам. Это компактное, неразборное устройство, где пластины выполнены из нержавеющей стали, а припой — из никеля или меди. Такой выбор позволяет плавно регулировать температуру теплоносителя на выходе. Раздельный контур хладоносителя обеспечивает безопасность, экономичность и энергоэффективность.

Конструкцию из нескольких изделий можно применять в небольших помещениях или квартире, в загородных домах и коттеджах. Отдельный паяный прибор, их количество рассчитывают и подбирают под задачи заказчика.

Для этой системы необходимо проводить техническое обслуживание — промывать хотя бы один раз в год — это увеличит срок эксплуатации.

Недостаток паяного теплообменника — отсутствует возможность увеличения мощности путем добавления пластин. Чтобы увеличить площадь теплых полов, нужно будет добавить дополнительные устройства.

При обустройстве загородных домов и дач в носитель лучше изначально добавить этиленгликоль на случай замерзания системы.