Из какого металла делают радиаторы охлаждения?

Hyundai Accent Арсэн ПРОДАН! › Бортжурнал › Конструционные особенности радиаторов. Взгляд изнутри.Часть первая

Внимание!Длинопост! Очень многа букав!
Мотаясь по просторам тырнетов, очень часто наталкиваюсь на статьи по поиску и замене радиаторов на автомобилях, в коих идут бурные ( и не очень) их конструкционных особенностях, материалах изготовления и технологических решений по производству.
К сожалению, информации подобного типа в сети крайне мало. Технологические циклы производства в наше время никто не предоставляет просто так( если вы понимаете, о чем я)) Менеджмент и маркетинг предоставляет покупателю информацию только о достоинствах той или иной технологии изготовления радиаторов. И часто эта информация, пропущенная через фильтр рекламы, становится всего лишь красивой оберткой))
В данном посте я попробую рассказать о большинстве технологий изготовления радиаторов, опишу их плюсы и минусы, а так же приведу немного теоретических выкладок. И так, поехали!))
Википедия на запрос «Радиатор», выдает одним из пунктов:
Радиатор ДВС
В двигателе внутреннего сгорания радиатор является теплообменником, объединяющим два контура системы охлаждения. В основном применяются трубчато-пластинчатые и трубчато-ленточные решётки радиаторов. В радиаторе для прохода охлаждающей жидкости применяют шовные или цельнотянутые трубки из латунной ленты толщиной до 0,15 мм. Используются и алюминиевые радиаторы: они дешевле и легче, но теплообменные свойства, при прочих равных условиях (размеры, площадь теплообмена и т. п.), и надёжность ниже.

Не будем углубляться в дебри ссылок, и типы систем охлаждения.Принципиальное устройство малого /большого контура, назначение помпы не знает, думаю, только ленивый(для королей лени-гугл в помощь)) Возьмем одну-«Замкнутая, жидкостная система охлаждения»
Итак, конструкционно, любой радиатор состоит из охлаждающей сердцевины, резервуаров( бачков, банок) и различного навесного и крепежного оборудования. Расположение радиатора в подкапотном пространстве бывает:
вертикальное-когда резервуары(далее-банки), располагаются друг над другом(горизонтально), радиатор имеет заливную горловину с крышкой-клапаном;
и горизонтальное-когда банки располагаются друг напротив друга (вертикально), заливная горловина отсутствуют, на расширительный бачок антифриз уходит по пара-воздушному штуцеру, расположенному в верхней части одной из банок.
Немного разберем цитату, приведённую выше.В основном применяются трубчато-пластинчатые и трубчато-ленточные решётки радиаторов. Данное выражение относится к, так называемым, радиаторам, изготовленным по «классической» технологии.

Слева показан трубчато-пластинчатая сердцевина, так называемое «плоское оребрение».Справа, соответственно, трубчато-ленточная сердцевина («ленточное»оребрение). Чаще всего материалом для обоих способов служит латунь.
Чтобы не говорил вам продавец, ЧИСТУЮ медь не один производитель не будет использовать-слишком мягкая и быстро окисляется. Под фразой МЕДЬ, производитель обычно имеет в виду, что чем меньше содержание цинка в используемом сплаве, тем больше сплав ближе к состоянию ЧИСТОЙ МЕДИ.
Не буду описывать принцип технологии, по этой ссылке

Принципиальная схема изготовления отработана производителями до мелочей, изготовления аналога радиатора(под замену оригинала) по данной технологии обеспечивает надежность работы изделия без каких-либо расчетов. Да, производители тупо копируют изделия друг у друга, и в 99% случаев аналог по эффективности не уступает оригиналу))). Поэтому, а также в связи с доступностью материала, «классическая» технология до сих пор ее используесят в изготовлении радиаторов.
Слабыми местами данной конструкции являются:
1.место пайки охлаждающих трубок с основанием-чаще всего радиатор начинает течь по углам, припой от вибрационных и динамических воздействиях «отщелкивается».

2.процесс пайки-полностью автоматизировать процесс пайки не возможно, поэтому сердцевины паяются (частично) в ручную что вводит человеческий фактор в производство, и как следствие, возможный брак.На видео, кстати, показана не полная пропайка трубок, которая чаще всего и приводит к образованию течей.
3.банки для таких радиаторов чаще всего изготавливаются из латуни, методом штамповки. А штамповка является дорогим удовольствием, так как требует изготовление матриц под КАЖДУЮ модель радиатора, а так же наличие как можно большего числа прессов-не будешь же ты переставлять и отстраивать пресс каждый раз под новый заказ))Кстати, поэтому некоторые производители изготавливают вместо латунных бачков-стальные.Их тоже можно применять, НО, сталь ооочень быстро корродирует и забивает в последствии трубки радиатора ржой)
4.ну и цена на материалы делает цену на конечный продукт выше, чем, например, на алюминиевые радиаторы)
Тем не менее, данную технологию применяют до сих пор( по опыту скажу-в оборонке только-только алюминий начал приходить на смену медяхе), некоторые автолюбители пытаются купить себе на заказ медный радиатор взамен алюмишки. Ну тут хозяин барин))
Многие акцентоводы сталкивались с радиаторами, у которых сердцевина выполнена в виде круглых трубок, смонтированных через резинки в «ванночки»(билят, мужики, это не ванночки, это основание!)Ну «донья», на худой конец))
Говоря скупым языком технаря-сердцевина в таких радиаторах монтируется с помощью радиально-уплотнительных втулок. Такой способ изначально подразумевает, что сердцевина целиком( или отдельные охлаждающие трубки) возможно поменять, в случае повреждения сердцевины. При этом вскрытие всего радиатора не требуется.

Да идея хороша, и она не нова. Первые образцы радиаторов на радиально-уплотнительных были разработаны в послевоенные годы. Принцип быстрой замены сердцевины, без снятия всего радиатора, в полевых условиях( в теории) стал главным козырем маркетологов. Огромным плюсом также являлось то, что сердцевина, за счет использования этих самых втулок, меньше подвергалась вибрационным нагрузкам, что повышает ее срок службы.Но.
Как всегда есть НО!) Первые образцы использовали круглую трубку, а не плоско-овальную, как в «классической» технологии.
Немного выкладок-при использовании круглой трубки, схема расположения рядная, при обдуве, поток воздуха создает » турбулентное» завихрение за обдуваемой трубкой, так называемую «мертвую тень», в которой не происходит охлаждение трубки.А, учитывая рядное расположение, теплосъем происходит только с боковых стенок трубок, соответственно рабочая(полезная) площадь теплосъема уменьшается.
Поэтому производители стали использовать шахматную схему расположения трубок. Что, в свою очередь, уменьшало количество теплообменных каналов при равных габаритах.Как пример, именно поэтому радиаторы на круглых трубках и втулках не работают на наших акцентах-меньше пропускная способность, меньшее количество теплообменных каналов(в сравнении с оригиналом), и как следствие, меньший теплосъем всего изделия в целом.Скученность подкапотного пространства не позволяет изготовить аналог по такой технологии без увеличения габаритов радиатора))
Более поздний варианты использует сплющенную круглую трубку, чтобы исключить эффект «мертвой тени». Схемы расположения трубок в таком случае различные

Чаще всего данную технологию применяют на тяжелой спец-технике: грейдеры, карьерные самосвалы, буровые и компрессорные установки, где габаритные размеры радиатора менее ограничены.Но, на такой серьезной технике радиаторы расчитываются и подбираются на основе лабораторных испытаний, расчетах теплового баланса работы двигателя.

.здесь плюсы технологии перекрывают минусы, так как аксиома «время-деньги» здесь основополагающая))

Развитие промышленности открыло новые горизонты, и на смену медно-латунным радиаторам постепенно начали приходить алюминиевые.
Одна из технологий, применяемых до сих пор, является ТАСПО. Аббревиатура переводится как теплообменные аппараты с подрезным оребрением. Что это значит, мы сейчас разберем.

На офф сайте белорусской компании ТАСПО достаточно подробно описана история компании с регалиями, и коротееенько технология))Ну эт как у всех))Попробую описать чуть подробнее))

Читайте также  Диагональное подключение радиаторов отопления с нижней подачей

Цитата: «.изготовление отдельно оребренных плоских многоканальных труб безотходным методом подрезания и отгиба тонких слоев металла с поверхности заготовки с последующей сборкой теплообменников с помощью клеевых составов, пайки или аргоно-дуговой сварки». Говоря русским языком, производитель берет алюминиевую трубку(на ней чуть позже остановимся) и из «тела» трубки как бы » поднимает» оребрение.

Одно из главных достоинств той технологии-это алюминиевая трубка, изготовленная методом экструзии.Трубка получается бесшовной, в теории-способной выдерживать давление свыше 25 БАР. Вся загвоздка-в способе оребрения. Для «поднятия» оребрения из «тела» трубки требуется особый спец.инструмент, который, в свою очередь» требует очень тонкой настройки на станки. Если интересно-отвечу в комментах, а пока-пара фото старых описаний данной технологии)

Промо: Типология автомобильных радиаторов

История создания автомобильных радиаторов восходит к концу XIX – началу XX века

Змеевики

До тех пор, пока двигатели были небольшой мощности, излишняя теплота рассеивалась прямо от двигателя и его узлов. При увеличении мощности стали применять первые радиаторы – в виде гладкостенной медной трубы, изогнутой в виде змеевика. В 1900 году было применено наружное оребрение этого змеевика.

«Сотовые» радиаторы

При дальнейшем увеличении мощности двигателей (свыше 4 л.с.) такие простейшие радиаторы стали неэффективны, в первую очередь из-за слишком большого гидравлического сопротивления. В 1913 году появился первый пластинчатый паяный медно-латуный радиатор. Параллельно ему появилась конструкция радиатора, в которой воздух проходил по горизонтальным воздушным трубкам внутри бачка, количество этих трубок со временем становилось все больше, пока не получился сотовый радиатор, который был распространен до середины 30-х годов.

Схематичное изображение сотового радиатора

Трубчато-пластинчатые и трубчато-ленточные радиаторы

Сотовые радиаторы достаточно трудоемки в производстве, громоздкие и тяжелые. Основной стимул развития автомобильных теплообменников – увеличение мощности двигателей и сокращение подкапотного пространства – заставил разрабатывать более сложные конструкции. У радиаторов появляются латунные донья, куда запаиваются медные трубки, окруженные стальными пластинами (трубчато-пластинчатые медно-стальные радиаторы). Вследствие использования стальных пластин при производстве трубчато-пластинчатых радиаторов возникают множество недостатков такой конструкции – большой вес, минимальные показатели теплообмена, низкая коррозийная стойкость сердцевины, низкая вибрационная стойкость.

Фрагмент сердцевины трубчато-пластинчатого медно-стального радиатора

В дальнейшем своем развитии такие радиаторы получают медную ленту вместо стальных пластин (трубчато-пластинчатые медно-стальные радиаторы), что позволяет существенно увеличить их теплоотдачу. Такой радиатор весит гораздо меньше при значительном улучшении тепловых характеристик.

Сборные алюминиевые радиаторы

Сборные алюминиевые радиаторы стали разрабатываться в СССР во время «холодной войны». Так как медь являлась стратегическим сырьем, исследователи стали пытаться создать алюминиевые радиаторы паяной и сборной конструкции. Сборные радиаторы имеют меньшую теплоотдачу, но дешевле в производстве.

Первые попытки создания алюминиевых сборных радиаторов были предприняты на Мариупольском (Ждановском) радиаторном заводе для автомобиля ЗиС-120, но оказались не очень удачными, так как за основу была взята конструкция с плоскоовальными трубками. Плоскоовальные трубки было невероятно трудно уплотнять на торцах в месте соединения с доньями, из-за чего проект оказался очень дорогим и его скоро свернули. Радиаторов такого типа было сделано около 2 тысяч штук.

В дальнейшем создатель такого радиатора Курневич пришел к выводу, что необходимо в сборных радиаторах делать трубку круглого сечения на всю длину. К сожалению, он не успел сделать опытный образец по причине смерти, остались только чертежи, но этот проект тоже посчитали убыточным.

Идею алюминиевого сборного радиатора с круглыми трубками подхватила в дальнейшем французская фирма «Софико». Они же и получили патент на это изобретение, хотя такой радиатор впервые был изобретен в Советском Союзе!

Паяные (несборные) алюминиевые радиаторы

Первые шаги к наиболее современным теплообменникам – алюминиевым паяным радиаторам – были сделаны в 70-х года XX века. Первые радиаторы такой конструкции изначально были разработаны для автомобилей ГАЗ 3102. К сожалению, первый опыт оказался неудачным – алюминиевый паяный радиатор не справлялся теплоотдачей, особенно в городском режиме, и поэтому скоро был заменен медно-латунным. Однако причиной его слабой теплоотдачи являлось конструктивное исполнение алюминиевой ленты – ее шаг составлял примерно 8мм. Причина такой крупноячеистой конструкции сердцевины тривиальна – на заводе, выпускающем эти радиаторы, не было технологической возможности делать меньший шаг охлаждающей ленты.

Автомобиль ГАЗ 3102 (маленькая «Чайка»)

Но история автомобильных радиаторов на этом не заканчивается. Мы уверены, что нас ждет еще много открытий и инноваций в сфере автомобильных теплообменников.

Интересные разработки в области автомобильных радиаторов

Все развитие автомобильных теплообменников стремилось к увеличению теплоотдачи при сохранении габаритов и одновременном уменьшении стоимости. Темпы развития автомобильных радиаторов определялись быстрыми темпами развития автомобильных двигателей – мощности моторов росли очень быстро, и охладить его становилось все труднее.

В попытках добиться результата создавались различные интересные типы радиаторов, по каким-либо причинам не вошедших в серию. Наиболее интересные образцы представлены ниже:

— автотракторный радиатор. Интерес вызывает способ закрепления крышки бачков –крышка закрепляется при помощи болтов. Такой радиатор является ремонтопригодным, что особо важно для сельской местности.

— «безотходный» алюминиевый радиатор для автомобиля «МАЗ», разработанный Бурковым В.В. Представляет собой довольно оригинальную конструкцию; взамен охлаждающих пластин или лент фрезой на охлаждающей трубке «елочкой» нарезалось оребрение. Такой радиатор оказался довольно сложным в изготовлении и поэтому не получил широкого распространения.

— алюминиевый паяный радиатор отопителя для автобусов ЛиАЗ. Особый интерес этот радиатор вызывает в связи с использованием съемных патрубков радиатора. Такое решение скорее всего принято для унификации изделия – в условиях невозможности точно указать угол, в каком требуется зафиксировать патрубки, необходим изменяемый угол.

— алюминиевый сборный радиатор охлаждения с плоскоовальной трубкой для автомобилей PORSCHE. В то время как традиционный алюминиевый сборный радиатор имеет круглые охлаждающие трубки, радиатор с плоскоовальными трубками возвращает нас к первым попыткам создания сборного радиатора. Зачем создавать радиатор с плоскоовальными трубками? Площадь контакта набегающего потока воздуха с такой трубкой на 30% больше, чем с круглой – соответственно, и теплоотдача больше.

— радиаторы с биметаллической сердцевиной. При создании таких радиаторов использовались комбинации традиционных материалов – меди, латуни, алюминия, стали. Наиболее яркий пример – сборный радиатор с круглыми алюминиевыми охлаждающими трубками и медными пластинами.

Материалы предоставлены компанией LUZAR — производителем автомобильных радиаторов

Какие бывают радиаторы?

Радиаторы охлаждения и отопления, можно поделить на две группы, первая — это медно-латунная группа, а вторая – это алюминии-пластиковая. Разделение конечно же очень условное, поскольку существует довольно много вариаций, вроде пластик + медь или медь + алюминий + пластмасса. Например, исключительно медных радиаторов не бывает, всегда присутствует латунь, медь и иногда сталь. Далеко не каждый автолюбитель знает, что радиаторы на ВАЗ «классику» имеют сердцевину сот состоящую из латунных трубок и стальных теплоотводов, и только экспортные варианты «классических» радиаторов имели медные теплоотводы, для использования машин в жарких странах.

В свою очередь алюминиевые радиаторы делятся еще на две дополнительные группы это цельнопаянные, в которых вся конструкция (бачки + сердцевина сот) или только сердцевина (соты) сплавлены между собой, тогда когда наборные радиаторы изготавливаются без применения сварки, исключительно механическим путем, методом развальцовки.

Читайте также  Термо краны для регулировки температуры радиаторов

Поскольку у меди и латуни тепловая передача значительно эффективнее алюминия, такие радиаторы предпочтительней, тем более что всегда есть возможность ремонта в отдаленных от крупных городов районах (например, колхоз или ПГТ). Платой за высокое КПД почти драгоценного металла становится цена конечного продукта, которая более чем в два раза превышает алюминиевый аналог. В последнее время, многие производители переходят на использование алюминиевых радиаторов в своих авто (это дешевле), но некоторые, например японские производители, остаются верны традициям качества и по сей день выпускают медные радиаторы печек и медные радиаторы охлаждения. Там же где требуется высокое КПД радиатора, которое кстати выражается в Киловаттах, производители стараются применять только медные радиаторы, взять например грузовые автомобили MAN, SCANIA, DAFF или наши КРАЗы и т.п.

В последнее время, также набирают обороты и сочетания стальных облуженных бочков медных радиаторов, которые не идут ни в какое сравнение по долговечности с латунными, и кто бы вы думали именно «грешит»? правильно, отечественный производитель. Но если на сайтах производителя об этом честно заявлено, то на базаре, при покупке нового радиатора вы не разберетесь что к чему.

Алюминиевые радиаторы находят свое применение в легковых и грузовых автомобилях, но в виду того, что выполнены из плохопаяющихся материалов не получили широкого и профессионального обслуживания. За редкими исключениями, находятся специалисты, разработавшие свои технологии по ремонту алюминиевой части сот и пластиковых бочков, но опять таки же, технологии ремонта различаются от мастера к мастеру как техникой так и качеством. Сварка аргоном сотовой части малоэффективна, поскольку толщина сот редко превышает четверть миллиметра, поэтому основным видом такого ремонта становится пайка горелкой и работа специальными клеями.

Трудно сказать какой именно радиатор лучше, поскольку и у тех и у других есть свои достоинства и недостатки. Например, медные радиаторы и печки более эффективны, тогда когда алюминиевые изделия более дешевые и легкие (если вес машины критичен). Кроме того не стоит считать что у всех алюминиевых радиаторов низкий КПД, напротив, японские образцы (тяжело сказать как они этого добиваются) бывают в два раза тоньше и меньше по площади медного аналога производства СНГ, но в два раза эффективней. Если же говорить о китайских и отечественных производителях, то китайские алюминиевые радиаторы вообще не выдерживают никакой критики, а отечественные образцы не блещут качеством материалов и КПД.

Срок же эксплуатации радиаторов сильно зависит от таких факторов как окружающая среда использования автомобиля (у океана и моря алюминиевые радиаторы долго не живут, так же как и соль с дороги им на пользу не идет), качество используемой охлаждающей жидкости, общий побег машины и многих других. Но в целом и общем, медные радиаторы служат несколько дольше своих алюмине-пластиковых братьев, поскольку в них нет пластиковых и резиновых деталей, которые со временем пересыхают и растрескиваются.

Потек радиатор: что брать взамен?

Когда-то первые вазовские «восьмерки» шокировали практически всех и всем. В том числе своими радиаторами, сделанными… из алюминия!

— Ну, додумались, — качали головами бывалые. — Медный-то запаял и дальше поехал — а с этим что делать? Новый покупать?

С тех пор всё изменилось. Мягкая, тяжелая и дорогая медь полностью уступила место алюминию. А чтобы посмотреть на современное производство радиаторов всех мастей, не нужно ехать за границу — гораздо удобнее посетить Санкт-Петербург. Помимо Медного всадника и Спаса на Крови там есть и завод ПО «Авто-Радиатор», выпускающий более полумиллиона радиаторов Luzar в год.

Трубчатые и пластинчатые

С детства помню, что грибы бывают трубчатые и пластинчатые — к примеру, подберезовики и сыроежки. Примерно такая же терминология применяется и в радиаторном мире. Два основных вида радиаторов систем охлаждения — это сборные трубчато-пластинчатые, а также паяные (несборные) трубчато-ленточные. Какие лучше? Давайте разбираться.

Начнем с подберезо… простите, с трубчато-пластинчатых изделий. Больше всего мне понравилось то, что внутрь трубок при производстве вставляют так называемые турбулизаторы. Это закрученные спиралью узкие и длинные пластмассовые пластины, благодаря которым жидкость не проносится вдоль трубки на всех парáх, а совершает сложное движение по спирали, что способствует лучшему теплообмену. А вообще процесс начинают с вырубания охлаждающих пластин из ленты (отечественной, кстати говоря!). Затем полученные пластины надевают на трубки, после чего применяют — необычный термин! — дорнование.

Дорн — это один из героев Чехова, но тут он точно ни при чем. Так называется стержень, который проталкивают внутрь трубок, увеличивая таким образом их наружный диаметр. Далее на концы трубок устанавливают опорные донья с уже вложенными резиновыми прокладками и концы трубок развальцовывают.

На оба опорных дна монтируют пластмассовые бачки, которые крепят загибанием лапок. Получившиеся радиаторы проверяют избыточным давлением более 2 бар, при этом специальный стенд регистрирует малейшее падение давления. Прошедший испытания радиатор получает индивидуальный номер.

Сборные радиаторы

высокая жесткость трубки защищены от повре­ждений пластинами малый процент брака невысокая стоимость материалов не очень высокая теплоотдача сложная оснастка

Повысить теплоотдачу удается расположением трубок в шахматном порядке. Если применить плоскоовальные трубки (уже без турбулизаторов), теплоотдача тоже увеличится. Кстати, такие трубки также обрабатывают дорном.

А что сказать о паяных радиаторах (кроме того, что они несборные)? Такие конструкции требуют соединять трубки с охлаждающей лентой и основанием бачков в специальной печке! Конструкция спекается в печи в среде азота, который помогает освободить алюминиевые поверхности от окислов. Далее через совсем тонкие (лапшевидные) прокладки устанавливают бачки.

Паяные радиаторы

высокая теплоотдача низкая стоимость оснастки нет необходимости в массивной резиновой прокладке (при пластмассовом бачке) сложный процесс производства (возможен брак при недостаточном соединении трубок с лентами) нет защиты трубок

Сколько ходов?

На этом нюансы терминологии не кончаются. Радиаторы делятся на одноходовые и двухходовые. У одноходовых жидкость проходит через все трубки радиатора в одном направлении — от одного бачка к другому. А вот у двухходового один бачок разделен на две части перегородкой; жидкость, зайдя через верхнюю часть, перемещается по половине трубок в одну сторону, а затем, уже в другом бачке, меняет направление движения и возвращается во вторую часть первого бачка, двигаясь в обратном направлении.

Для кого это делают?

Авто-Радиатор — официальный поставщик конвейеров АВТОВАЗа и СП GM-АВТОВАЗ. Само собой, радиаторы Luzar поставляются на вторичный рынок, причем не только на российский — экспорт налажен в Белоруссию, Казахстан, Азербайджан, Украину, Армению… Сегодня питерцы производят свыше 1200 наименований продукции, в основном это радиаторы охлаждения двигателей и радиаторы отопления салона легковых автомобилей отечественного и импортного производства, а также некоторых грузовиков. Хотя и кондиционеры с интеркулерами не забыты.

Культура производства на заводе меня приятно удивила. Если радиатор моей машины потребует замены, не буду сбрасывать со счетов изделия Luzar.

Читайте также  Какие бывают радиаторы отопления для квартиры?

Развитие конструкции сборных радиаторов

От наиболее простых, с двухрядным расположением трубок, снабженных для повышения эффективности пластмассовыми турбулизаторами, перешли к производству радиаторов с шахматным расположением трубок. Венцом развития сборных радиаторов стали конструкции с плоскоовальными трубками, улучша­ющими теплоотдачу.

Особенности изготовления радиаторов

Радиатор – необходимая составляющая нормальной работы автомобильного двигателя. Без надлежащего охлаждения двигатели быстро закипают и вскоре выходят из строя. Чтобы обеспечить длительную работу мотора без перебоев множество производителей разрабатывают систему охлаждения по разным технологиям. Об этом пойдет речь далее.

Технические требования и эффективность охлаждения

Качественный радиатор должен иметь следующие характеристики:

  • стойкость к коррозии;
  • герметичность изделия;
  • сопротивляемость вибрациям;
  • стойкость к резким изменениям температуры;
  • наружная прочность металла.

Особенности производства

В зависимости от вида радиатора используется и разная технология производства. Они могут отличаться в зависимости от производителей. Малейшие детали сильно влияют на качество конечной продукции.

Алюминиевые

Литьевой метод заключается в использовании сплавов алюминия и кремния для производства систем охлаждения. При этом кремния используется не больше 12%. Полученное изделие обретает прочность и высокий показатель теплопроводности. Секции системы изготавливаются с помощью форм. До начала литья 2 части формы стыкуют между собой, затем их наполняют расплавленным металлом.

Открытие формы производится после ее полного остывания. Охлажденное изделие извлекается из формы, обрабатывается и соединяется с другими в единую систему. Внутренность обрабатывается против коррозии. Готовое изделие окрашивается специальным составом.

Экструзивный метод изготовления радиатора заключается в продавливании размягченного сплава в специальные формы. Так производятся отдельные части, имеющие замкнутый объем, которые после собираются в единое изделие методом термического прессования.

Готовые части не имеют пор и каких-либо шероховатостей. Части радиатора после производства нельзя укорачивать или удлинять во время установки. Производство предусматривает изначальное точное определение размеров будущего готового изделия.

Единственный минус таких изделий – слабые швы, которые часто лопаются под высоким давлением и быстро поддаются коррозии.

Биметаллические

Изготавливаются из алюминия и стали. Прочность и стойкость к коррозии системе обеспечивает сталь. При этом алюминий обеспечивает высокую теплоотдачу.

Вообще биметаллические радиаторы оснащены всеми достоинствами алюминиевых изделий, но исключают их недочеты.

Передовые технологии производства на примере компании NRF

Сегодня в производстве радиаторов используется 2 технологии: механическая сборка и пайка.

В первом случае радиатор полностью изготовляется «руками»:

  1. Механическим способом устанавливаются трубки в гофрированную фольгу.
  2. Далее надеваются по бокам пластины-коллекторы.
  3. Затем на эту конструкцию устанавливают пластиковые бачки и другие необходимые части.
  4. Все фиксируется и зажимается в единую конструкцию.

По сути, в этом и заключается механическое изготовление системы охлаждения, которую далее можно использовать по назначению.

В свою очередь, компания NRF занимается изготовлением трубчато-ленточных радиаторов паяным методом:

  1. Все составляющие системы изготавливаются исключительно из алюминия, но может устанавливаться пластиковый бачок.
  2. Плоскоовальные трубочки теплообменников заменяются здесь трубками с турбулизатором – завихрителем, где находится охлаждающая жидкость.
  3. Производство гофрированного слоя осуществляется непосредственно на заводе с помощью формовочных машин. Готовая деталь отличается особой прочностью и жесткостью.
  4. Из пластин из алюминия производятся боковые коллекторы. Для их изготовления также используется две технологии: лазерное нарезание и прессование. Может использоваться комбинация обеих способов.

Теперь все детали собираются воедино и почти готовы к пайке. Спайку радиатора проводят с помощью специальных печей. Длительность пайки прямо зависит от типов теплообменников. В целом радиаторы находятся в печи 2-3 часа.